
 

THEME ARTICLE:     Beyond Testbeds: Real-World IoT Deployments 

The BIG IoT API -

Semantically Enabling IoT 

Interoperability 

Today, IoT platforms offer proprietary interfaces and 

protocols. To enable interoperable interaction with 

those platforms we present the generic BIG IoT API 

that employs a novel approach for self-description 

and semantic annotation to fully adapt arbitrary IoT 

platforms. We have deployed this approach for 

multiple platforms from the mobility domain.  

Today, the Internet of Things (IoT) is an increasing com-

mercial reality and connected ‘things’ are already largely 

outnumbering Web users. Hence, the IoT plays a tremen-

dous role in digitalization efforts. Possible applications and 

market areas range from smart cities to autonomous manu-

facturing. In order to provide access to data (and function-

alities) of connected things, dozens of IoT platforms have 

emerged, such as ThingWorx, Siemens’ MindSphere, or 

Bosch’s IoT Suite.  

However, there is still a crucial issue in the IoT: the miss-

ing interoperability between platform protocols and inter-

faces. Today, IoT platforms are vertically oriented and 

often still closed systems. A heterogeneous landscape of 

standards is used by some IoT platforms and others are 

solely relying on proprietary interfaces. This fragmentation 

of the IoT and the lack of interoperability prevent the emergence of IoT ecosystems that could 

bring substantial economic value. A recent McKinsey study [1] estimates that 40% of the eco-

nomic potential of the IoT directly depends on interoperability. 

BIG IoT [2] aims at addressing these interoperability issues. Naturally, it is impossible to dictate 

one language (i.e., protocol and interface) for the IoT, since purpose and domain of IoT plat-

forms differ. Instead of defining a single gigantic IoT API that covers all possible IoT platform 

functionalities, this work reaches interoperability through the BIG IoT API that defines a generic 
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base structure, which can be instantiated by annotation with terms from a semantic vocabulary. 

The advantage is that the semantic vocabulary is easier to be developed in a community process, 

which is essential for building a multi-platform IoT ecosystem. In this way the API is kept slim 

and easy understandable while being generic and applicable in different domains. 

RELATED WORK 

Previous work on IoT architectures (e.g., [3]) provide high-level layering and abstraction con-

cepts. We go further than a mere architectural proposal here and provide a concrete API and its 

implementation. This is similar to [4], although, we do not develop yet another platform, but 

instead propose a generic API to be applied to existing platforms. The key difference to the 

manifold IoT standards and adaptation approaches already out there is that the BIG IoT API 

provides only a base structure and relies on semantic annotation to make it useful. Thereby, 

managing interoperability is transferred from the API to the semantic model.  

An example for the contrary approach, i.e., defining one specific API to integrate all kinds of IoT 

functionalities, is the meSchup IoT platform [5]. Via a JavaScript API, a naming scheme allows 

accessing properties from a list of integrated device types. I.e., for each new device type the 

meschUp IoT platform is adjusted. This works well for a single IoT platform with full control 

over the API. As soon as multiple platforms are involved to form an ecosystem, a community 

process needs to be established, which can be better supported through extending a common 

semantic model than a full API definition. Established semantic models, which have already 

proven that they can be efficiently managed by a community, are schema.org [6] or Haystack1. 

There is a heterogeneous landscape of existing standards for IoT platforms, such as OMA 

LWM2M2, OneM2M [7], OGC SWE [8] or OPC UA3. Our approach does not aim to supersede 

those standards. Instead, by defining an according extension of our semantic model, components 

that follow these standards can be integrated with our ecosystem by implementing the BIG IoT 

API and describing the data offered semantically. The W3C standard Hydra4 also allows docu-

menting a REST API. Operations on resources can be specified and allow a client to understand 

how to interact with the API. This is similar to BIG IoT offering descriptions as both describe 

the interface using JSON-LD. However, our approach goes beyond the interface description by 

providing semantic domain models that can be used to annotate it. Also, similar to this is the 

HyperCat standard5 that describes available IoT resources and semantically annotates them at a 

centralized hub. Our approach is different as it does not solely focus on discovery and further 

avoids a single point of failure through a hub, but keeps the autonomy at the IoT platforms that 

are directly accessed via the BIG IoT API. 

In [9], the Semantic Gateway Service (SGS) is presented as a bridge between devices and appli-

cations and translates between device messages and higher level data models. To enable analysis 

and reasoning, the data received from the device is semantically annotated. As a central model 

W3C’s SSN ontology [10] is proposed. The SGS approach is similar to the BIG IoT approach; 

however, functionalities such as discovery and accounting are not covered. While we define a 

semantic domain model, SGS leaves this open, which ultimately leads to less interoperability. 

The challenge of semantic interoperability on the IoT is addressed in [11] by introducing the 

concept of smart spaces. A Semantic Information Broker (SIB) captures the context of a local 

smart space (e.g., a room or vehicle) and is used for discovery and data storage. This is similar to 

our Marketplace; however, goes beyond the SIB by supporting accounting of data access and 

aims for monetization of IoT resources. On the other hand, data storage is intentionally not sup-

ported, but kept at the responsibility of each platform. This is important for many IoT platform 

providers, as their data is protected and needs to remain behind their own security mechanisms. 

The SIB intentionally captures the data of all agents within the smart space to decouple the 

agents from each other. 

                                                                 
1 https://project-haystack.org 
2 http://www.openmobilealliance.org/release/LightweightM2M/V1_0_2-20180209-A 
3 https://opcfoundation.org/developer-tools/specifications-unified-architecture 
4 http://www.hydra-cg.com/spec/latest/core/ 
5 http://www.hypercat.io/standard.html 
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Addressing semantic interoperability, Kotis & Katasonov [12] propose a semantic gateway 

design that supports the semi-automated translation of things’ data. Therefore, alignments of the 

things’ ontological descriptions with a well-defined schema are computed. This allows the provi-

sion of data in a uniform way. Our approach requires the provider to register an offering descrip-

tion at the Marketplace and therefore translate the metadata beforehand manually. An automated 

alignment could be included in the future. However, it requires a preexisting ontological descrip-

tion of things, which is today rarely present. 

A SEMANTICALLY-ENABLED API FOR 
INTEROPERABLE IOT ECOSYSTEMS 

Figure 1 provides an overview of the interplay of components of an IoT ecosystem based on the 

BIG IoT API: The central pillar of the ecosystem is the Marketplace. Here, a Provider (e.g., an 

IoT platform offering parking space data) registers its resources as so-called Offerings. To facili-

tate a provider in conforming with the BIG IoT API, the Provider Library (Lib) can be utilized.  

 

Figure 1: IoT ecosystem components 

A Consumer in this ecosystem is an IoT application or service that consumes offerings of one or 

multiple IoT platforms. A consumer discovers matching offerings at runtime based on a so-

called Offering Query. Both sides, the consumer and provider, report accounting data (e.g. num-

ber of resource records obtained/provided) back to the Marketplace, which enables the monetiz-

ing of resources.  

A consumer example is the ParkFinder application that we developed for the SEAT S.A. car 

manufacturer. Since cars are roaming between cities, the app needs to be capable of accessing 

parking data from multiple platforms in an interoperable way, i.e., without a per-platform inte-

gration. We implemented ParkFinder as a smartphone app that is incorporated with the car’s 

dashboard. The user can get real time parking availability by filtering on preferences (e.g., dis-

tance or price). Once the user simply enters where she is headed, the app provides real time 

guidance to the parking spot. Further description on the implementation of this app with the BIG 

IoT API is given below. 

Offering Description Model 

An Offering represents a resource provided by an IoT platform. This could be data, such as a 

timeseries of temperature data, or functions, such as changing the sampling rate of a thermome-

ter. An offering is defined by an Offering Description (OD) that can be registered on the Market-

place. The OD comprises information on how to access the described resources, syntactic 

definition of used input and output types, as well as semantic annotations to enable discovery 

and correct matchmaking between consumers’ demands and providers’ offers. The OD model is 
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shown in Figure 2 and based on the Thing Description model6 developed in the W3C Web of 

Things Working Group. 

 

Figure 2: Overview of the offering model  

At the heart of the model are the Offering and its conceptual counterpart the OfferingQuery. Both 

classes have the same properties. While an offering is linked to a provider, an offering query is 

created by a consumer to search for matching offerings via the Marketplace. This design follows 

the mechanism of demand/offer, modeled in schema.org [6] via the classes “schema:Demand” 

and “schema:Offer”.  

An offering has a Category that puts it in context and can be used for discovery as a search 

keyword. Further, the offering has endpoint details that specify the address, protocol and method 

(e.g., HTTP POST or CoAP GET). Crucial for enabling the access to offerings is the definition 

of its input and output data. Input data describe the parameters to query the offering. Output data 

describe the types used in the response. Additionally, the offering defines non-functional proper-

ties such as spatial extent, price or license, to refine the offering matching process. 

Listing 1 shows an example of an OD as an instance of that model encoded in JSON-LD. This 

offering provides outside temperature measurements and hence declares to be of category 

AirTemperature from our environment vocabulary. Three inputs are defined: latitude, longitude, 

and radius. The outputData is defined as a complex structure that contains multiple objects, each 

one having two members: “temperature-value” and “unitOfMeasure”.  

{"@context" :  "https://schema.big-iot.org/ctx.jsonld", 

  "schema" :      "http://schema.org", 

  "providerId" :  "WeatherGuru", 

  "name" :        "My-Temperature-Offering", 

  "category" : "http://schema.big-iot.org/environment#AirTemperature", 

  "endpoints" : [ { 

    "schema:url" :   "http://my-server/access/temp", 

    "schema:type" :  "HTTP", "method" : "POST", 

    "mediaType" :    "application/json"} ], 

  "inputData" : [ 

    { "name" : "latitude", "rdfAnnotation" : "schema:latitude"},  

    { "name" : "longitude", "rdfAnnotation" : "schema:longitude" },  

    { "name" : "radius", "rdfAnnotation" : "schema:geoRadius" } ], 

  "outputData" : {  

    "rdfReference": "schema:QuantitativeValue", 

    "members": [ 

      { "name": "temperature-value",  "rdfAnnotation": "schema:value" }, 

                                                                 
6 https://w3c.github.io/wot-thing-description/ 
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      { "name": "unitOfMeasure", "rdfAnnotation": "schema:unitCode" } ] 

… 

Listing 1: Example of an Offering Description 

Vocabulary for the Semantic Annotation 

For the semantic annotation of offering descriptions, e.g., defining the semantics of inputs, out-

puts and offering category, a well-defined vocabulary of domain terms is needed. This vocabu-

lary should be widely shared and agreed upon so that all consumers and providers of IoT 

platforms can rely on it. Further, it should evolve in an open community process to allow active 

engagement by ecosystem stakeholders. 

We have selected schema.org [6] as a basis for our domain model, as it provides a vendor-

neutral, community-developed vocabulary for structured data. Schema.org markup is widely 

used on Web pages to annotate their content. Today, the core of schema.org covers a broad 

selection of terms ranging from e-commerce to sports activities. Other domains are covered as 

extensions (e.g., health-lifesci.schema.org). For the deployments in the mobility domain ad-

dressed in this work, we have developed an extension called schema.big-iot.org/mobility. It 

includes definitions for relevant concepts, such as parking site or bus stop. We have documented 

all defined concepts as Web pages in the schema.org style (see e.g. http://schema.big-

iot.org/mobility/ParkingSpace).  

Crucial for our generic API approach is to enable the management of the underlying semantic 

model in a community process. We support this via the Marketplace user portal. When register-

ing a new offering, the provider can specify the semantic annotations. For example, an offering 

representing traffic speed data shall be registered. The user would find the category “Mobility” 

and its sub-category “Traffic”, but “Traffic Speed” is not part of the vocabulary. Hence, the 

provider can manually propose it as a new term by simply submitting it via the portal. Hence-

forth, this term is added to the vocabulary as “proposed:trafficspeed” and the offering is listed by 

the Marketplace by marking its category as proposed. 

Once a new term is proposed to the system, a community process is initiated and moderated by 

an ontology engineer to include the term officially into the vocabulary or respond with a rejec-

tion of the addition. As the Marketplace is the focal point for providers and consumers to engage 

in the ecosystem, also other management tasks on the vocabulary, e.g., the proposal of deletion 

of terms or the re-organization of hierarchies, will be proposed and moderated here in the future. 

The Generic IoT API 

There are two kinds of integration modes supported by the BIG IoT API: (a) provider-side inte-

gration and (b) consumer-side integration. Both integration modes are illustrated in Figure 1. 

In integration mode (a), an IoT platform uses the Provider Lib to proxy a data access call to an 

offering of the IoT platform. The application logic for that callback is implemented by the pro-

vider. To enable consumers to find the offering, the provider registers its OD at the Marketplace. 

To discover offerings, the consumer sends a search query to the Marketplace. A discovery may 

return multiple matching ODs. Once a consumer has selected an offering, it subscribes to it and 

obtains an access token via the Marketplace. Upon access to an offering, the Provider Lib pro-

cesses the request, validates the access token, and calls the offering’s callback function. I.e., here 

the access interface is offered by the BIG IoT Provider Lib directly. 

The access interface comprises the following parameters: First, the token field authorizes the 

user and is located in the header of the request. Second, the input data and output data fields are 

filled according to the specification in the OD. The input data included in the request are encod-

ed according to the mediaType specified in the OD. E.g., in Listing 1, parameters are encoded as 

JSON and sent to the HTTP endpoint as a payload of the POST method. The JSON message in 

the payload could e.g. be {"latitude":50.22,"longitude":8.11,"radius":500.0}. Similarly, the 

output data are encoded according to the specified mediaType. In Listing 1, the response from 
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the provider is encoded in JSON and contains an array comprising objects such as {"tempera-

ture-value": 23, "unitOfMeasure": "degC" }. 

In integration mode (b), the BIG IoT API supports a fully descriptive adaptation of the existing 

platform interface to provide direct access to offerings. As shown in Figure 1, the Consumer Lib 

accesses the legacy API of the IoT platform directly. This integration mode requires more infor-

mation in the OD on the exact syntax of the request and its response, i.e., how it is structured and 

formatted. The required additional information is provided via a template approach for the re-

quest and a selector approach for the response.  

The example in Listing 2 shows a request template to access an existing IoT platform to request 

temperature values with a location filter. Here, the request is encoded in XML, although, this 

template approach is language-agnostic. Instead of containing actual values, the request template 

contains placeholders (marked between “@@” signs). This is essential for our approach, as the 

consumer can now use this request template for querying data from the platform by replacing the 

placeholders with actual values that fit the specification of the inputData in the OD. A statement 

is included for each inputData element of the OD to link it with a placeholder; e.g., the statement 

"placeholder": "@@y@@" is added to the “latitude” input in Listing 1. 

<?xml version="1.0"?> 

<WeatherRequest> 

  <observedProperty>schema:temperature</observedProperty> 

  <location> 

    <circle-y>@@y@@</circle-y> 

    <circle-x>@@x@@</circle-x> 

    <circle-radius>@@radius@@</circle-radius> 

  </location> 

</WeatherRequest> 

Listing 2: Request template to access data from an IoT platform  

To convey the semantics of the original response to the consumer, the OD needs to be also ex-

tended by the information of which data elements shall be mapped to which outputs. Therefore, 

the OD is extended by including selectors, which map response elements to outputData ele-

ments. E.g., an XML SOAP response “<Envelope><Body><Measurements><Measure 

time=”13:19”>23</Measure>…” contains an array of temperature measurements. These values 

can be linked to the output “temperature-value” of the OD in Listing 1 by adding the statement 

“selector”: “Envelope.Body.Measurements.Measure” into the outputData element. Such a 

selector represents a path in the tree data structure (similar to XPATH). This goes beyond a 

similar integration mechanism described in [13], as also arrays of data values can be mapped. 

DEPLOYING PLATFORMS & APPLICATIONS WITH 
THE BIG IOT API  

The BIG IoT API has been utilized so far by 10 IoT platforms to provide over 60 offerings, 

which are publicly accessible on the Marketplace (https://market.big-iot.org/).  In our deploy-

ments, we have focused so far on four geographic regions: Barcelona (Spain), Piedmont (Italy), 

and Berlin / Wolfsburg (Germany).   

In Barcelona, WorldSensing’s IoT platforms FastPrk and Bitcarrier have been incorporated in 

the ecosystem using the BIG IoT API to provide parking data and traffic information. Also, the 

Sentilo and OpenIoT platforms have been integrated to provide information on bike sharing, 

noise levels, and e-car charging stations. To detect people density in the city, Wifi probe sensors 

(stationary and mounted on busses) have been integrated. Further, we have integrated air quality 

sensors hosted on cars. In Piedmont, the regional smartdatanet platform has been integrated to 

provide data on parking, air quality, traffic and bike sharing. In Berlin / Wolfsburg, we integrated 

VMZ’s Traffic Information Center and Bosch’s IoT Suite to provide parking, live bus data and 

charging station availability.  
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Intentionally, we are providing similar data sets for different regions and platforms. Using the 

BIG IoT API, one application can demonstrate cross-platform interoperability[2][2][2][2][2]. We 

illustrate this aspect in context of the ParkFinder application (Figure 1) implemented for SEAT 

S.A. The key benefit of using the BIG IoT API for this app is that data from different platforms 

can be automatically discovered through the Marketplace. I.e., the system is efficiently extenda-

ble to different cities and parking data providers. We demonstrate this ability by integrating the 

app with the FastPrk platform and the VMZ platform. Their ODs both refer to the category 

“mobility:ParkingSpace”, hence the platform offerings are found via the Marketplace.  

Listing 3 shows the implementation of the provider for the FastPrk platform. The Java code 

authenticates a provider object, creates an offering description and sends it to the Marketplace. 

The Lib allows easy appending of metadata to the offering (category, region, inputs, outputs, 

etc.). A request handler (callback) is defined that implements the business logic to respond with 

the correct information when the offering is accessed. Similar to the provider code, the Con-

sumer Lib is used for the ParkFinder application. A consumer object can discover and subscribe 

to offerings and access it with concrete input parameters. 

Provider provider = new Provider(PROVIDER_ID, MARKET_URI, IP, PORT); 

provider.authenticate(PROVIDER_SECURITY_TOKEN); 

 

RegistrableOfferingDescription offeringDescription =  

 provider.createOfferingDescription("MyOfferingID") 

 .withCategory("mobility:ParkingSpace") 

 .inRegion(Region.city("Barcelona")) 

 .withLicenseType(LicenseType.OPEN_DATA_LICENSE)  

 .addInputData("long",    "schema:longitude", NUMBER) 

 .addInputData("lat",     "schema:latitude", NUMBER) 

 .addInputData("radius",  "schema:geoRadius", NUMBER) 

 .addOutputData("parkX",  "schema:longitude", NUMBER) 

 .addOutputData("parkY",  "schema:latitude", NUMBER) 

 .addOutputData("status", "mobility:parkingSpaceStatus", STRING) 

  .withAccessRequestHandler(accessCallback); 

 

offeringDescription.register(); 

Listing 3: Excerpt of provider code using Provider Lib 

EVALUATING THE BIG IOT API  

In this section, we evaluate the API concerning performance as well as usability. An analysis of 

these results is provided in the next section. Both aspects are important to introduce the API as 

an enabler for IoT ecosystems. 

For evaluating the performance, we used the OpenWeatherMap7 platform as an example and 

implemented a Java application that compares the access between two cases: (i) utilizing the 

Consumer Lib to access a Provider that proxies the platform in a BIG IoT-conform way and (ii) 

native communication with the platform API. We limited the evaluation to one offering, since it 

is the impact of using the BIG IoT API that is of interest, and not the difference between varied 

sizes of offering data. 

The overhead caused by BIG IoT is measured as the difference in transfer time and transferred 

data. The transfer time is measured for a full data access cycle (i.e., start of the request call until 

response is received by application). The transferred data is measured as the total amount of 

bytes of the involved HTTP requests and responses. Thereby, case (i) involves additional HTTP 

communication between consumer and provider, while both were located on the same machine 

so that the measurements were not subject to public network cross traffic. The interaction with 

the Marketplace for registering and discovering the offering was not captured, as this only hap-

pens during application initialization.  

                                                                 
7 https://openweathermap.org/api 
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We ran this performance test 50 times, which resulted in an averaged transfer time of 126.6 ms 

for case (i) and 108 ms for case (ii). This overhead of 18.6 ms of the BIG IoT approach is due to 

the additional provider logic (e.g., validation of access token, and mapping of received data to 

semantically-defined outputs). Further, the BIG IoT approach caused an overhead of 240 bytes in 

transferred data. This is mainly due to the access token (a JSON Web token) that is sent by the 

consumer to the provider for authentication purposes.  

 

For evaluating the usability, we conducted an online survey that was filled by 12 developers, 

external to the BIG IoT project, as part of a hackathon and an open call for ecosystem exten-

sions. In the first question, most participants (84 %) rated their experience as developers from 

medium to high (3-4) on a scale from 0-5. Next, the survey consisted of 4 questions each for the 

usability of the Consumer Lib and the Provider Lib. They related to how much time it took to 

consume / provide the first and the last offering, how convenient the Libs were perceived, and 

how easy it was to get started. 

To consume the first offering it took 67% of the participants 30-60 minutes, while the last offer-

ing could be consumed by 75% in less than 10 minutes. The provisioning of a first offering took 

30-60 minutes for 50% and the last offering could be registered in under 30 minutes by 86% of 

participants. The convenience of the Consumer Lib was rated by 86% of participants medium to 

high, and for the Provider Lib 63% specified a high convenience. The ease of getting started was 

rated by most developers (67%) as high for the Consumer Lib and medium to high by 88% for 

the Provider Lib. 

After these multiple choice questions, free-text fields allowed the participants to provide feed-

back. Positive aspects noted related to the good developer guide, the availability of complemen-

tary data on the Marketplace, and the semantic alignment with schema.org as it gives clear 

documentation. Suggestions for improvement were given regarding the support of more pro-

gramming languages, the advancement of the Marketplace (e.g., regarding stability or better 

support for monetization), and guidance to choose the right semantic terms. 

LESSONS LEARNED 

With multiple real-world deployments of the API, we have shown how our approach facilitates 

interoperability. Deployments of IoT platforms from different domains and geographic regions 

can be transparently accessed by an application that utilizes the API. The case of the ParkFinder 

application shows the advantages of the presented approach and how this bridging of the in-

teroperability gap has the potential of creating economic value. The ParkFinder app only needed 

to be implemented once, and can henceforth work with different IoT platforms providing parking 

information. This fulfils the “Cross Platform Access” pattern described in [2].  

The API is generic insofar that no assumption is made about the semantics of inputs and outputs 

of IoT offerings. Our generic approach allows for annotations from separate semantic models 

and stands in contrast of defining one gigantic specific API that covers all possible functionali-

ties of all platforms. Conceptually this is a delegation of the interoperability problem from the 

API to the semantic models. The key difference however is that semantic models are easier to 

extend and maintain in a community process. Project Haystack8 and schema.org [6], which is 

used for millions of Web pages, show how such models can be efficiently managed by a com-

munity. For establishing a multi-platform IoT ecosystem, extending and maintaining a semantic 

model in a community process is easier than doing it for an ever-growing API. As only fractions 

of the semantic model are used by one platform, the impact is reduced – while in case of a spe-

cific API, it is expected that a platform implements most parts. A semantic model is intrinsically 

extensible (e.g. by adding terms to a taxonomy), thus it is capable to cover evolution of existing 

and addition of future use cases and domains. 

As schema.org does not yet sufficiently cover IoT-related terms and also specific terms for our 

application domains, we have extended the schema.org vocabulary. We aim to integrate these 

                                                                 
8 https://project-haystack.org 
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extensions to the schema.org core or to new domain specific extensions of schema.org so that it 

will cover in future also IoT-relevant application domains such as mobility, environment, or 

health. The model of the offering description has been aligned with the Thing Description model 

developed in the W3C Web of Things group, which is on its way to become an official recom-

mendation.  

In order to bring an existing IoT platform into the ecosystem, we present two alternative modes: 

(a) provider-side and (b) consumer-side integration. While the provider-side integration relies on 

the easy-to-use libraries, the consumer-side integration incorporates an interface and protocol 

description of the platform API, which enables a fully descriptive integration. 

This fully descriptive adaptation of platform APIs can facilitate integration of new IoT platforms 

into the ecosystem. Particularly when thinking this concept further towards tools that support the 

creation of the ODs through intelligently designed user interfaces, enriched with protocol tem-

plates and data selectors. Once such an OD is defined for a specific communication protocol 

(e.g., LWM2M or OneM2M) it can be even shared with other platform providers that use the 

same protocol. 

Our deployments have shown, that the fully descriptive approach can be applied to Web APIs 

with different protocols, e.g., HTTP, CoAP, MQTT, or WebSockets. The outgoing messages 

may use arbitrary structures; however, they have to be ASCII-encoded to represent them as a 

template. The incoming messages transmitting data from the platform to the consumer has to 

represent a tree structure so that the data selector approach can be applied. This is the case for the 

widely-used JSON and XML formats. Although this scope of the approach covers most IoT 

platform interfaces today, there are clear limitations in this design, e.g., binary data encodings 

cannot be covered.  

Also not yet covered in the proposed design for descriptive adaptation is a way to support differ-

ent authentication protocols on the platform. In the integration mode (a) the authentication is 

granted by the Marketplace and the consumer receives an access token to be able to request data 

from the gateway service of the provider. The authentication mechanisms used between gateway 

and platform are oblique to the consumer. In case of the integration (b), the authentication has to 

happen directly with the platform. Here, a workflow description for the authentication method 

employed by the platform can be supported in the future. 

Our evaluations of the API have confirmed its usefulness. The performance evaluation showed 

that the transfer time and data overheads caused by using the API are low. The measured over-

heads stem from additional functionalities provided by the BIG IoT approach. Mainly, they are 

due to the validation and transfer of the access token, which is basis of the security mechanism in 

BIG IoT. Further, the introduced interoperability causes some overhead, as the mapping of re-

ceived data to semantically-defined outputs requires some computation time. The usability eval-

uation showed generally positive feedback. The survey confirmed that most developers were 

able to use the API efficiently. Nevertheless, developers indicated the need for improvements, 

such as better guidance on choosing semantic terms. 

CONCLUSION 

With multiple real-world deployments, we have shown how our approach facilitates cross-

platform interoperability. Deployments of IoT platforms from different domains and geographic 

regions can be transparently accessed by an application that utilizes the BIG IoT API. Both, the 

API libraries and the central Marketplace component are being published as open source under 

the Eclipse IoT umbrella9.  

In future, the functionalities of the BIG IoT API will be extended, such as operations for event 

notification and controlling of things. Then, the idea of a Web of Systems with autonomously 

interacting things [14] can be implemented utilizing the API. To support quality of service capa-

bilities offerings need to be enabled to indicate e.g. their maximum access frequency, which the 

API needs to enforce. 

                                                                 
9 https://projects.eclipse.org/proposals/eclipse-big-iot 
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Another future development on our agenda is the incorporation of mechanisms for semantic and 

syntactic mediation. As the likelihood of mismatches during offering discovery is high, an ap-

proach for mediating between queried and available offerings is needed. This could start with 

simple unit transformations and could expand to advanced semantic concept conversion [15]. 

Further, validation of offerings on registration is a topic for future work. Currently, the Market-

place does not check the validity of the specification of an uploaded offering description against 

actual data retrieved from the platform. This may lead to falsely described offerings on the Mar-

ketplace. We are working on an automated validation of inputs and outputs with a sample data 

sets from the platform. 
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