

THEME ARTICLE: Beyond Testbeds: Real-World IoT Deployments

The BIG IoT API -

Semantically Enabling IoT

Interoperability

Today, IoT platforms offer proprietary interfaces and

protocols. To enable interoperable interaction with

those platforms we present the generic BIG IoT API

that employs a novel approach for self-description

and semantic annotation to fully adapt arbitrary IoT

platforms. We have deployed this approach for

multiple platforms from the mobility domain.

Today, the Internet of Things (IoT) is an increasing com-

mercial reality and connected ‘things’ are already largely

outnumbering Web users. Hence, the IoT plays a tremen-

dous role in digitalization efforts. Possible applications and

market areas range from smart cities to autonomous manu-

facturing. In order to provide access to data (and function-

alities) of connected things, dozens of IoT platforms have

emerged, such as ThingWorx, Siemens’ MindSphere, or

Bosch’s IoT Suite.

However, there is still a crucial issue in the IoT: the miss-

ing interoperability between platform protocols and inter-

faces. Today, IoT platforms are vertically oriented and

often still closed systems. A heterogeneous landscape of

standards is used by some IoT platforms and others are

solely relying on proprietary interfaces. This fragmentation

of the IoT and the lack of interoperability prevent the emergence of IoT ecosystems that could

bring substantial economic value. A recent McKinsey study [1] estimates that 40% of the eco-

nomic potential of the IoT directly depends on interoperability.

BIG IoT [2] aims at addressing these interoperability issues. Naturally, it is impossible to dictate

one language (i.e., protocol and interface) for the IoT, since purpose and domain of IoT plat-

forms differ. Instead of defining a single gigantic IoT API that covers all possible IoT platform

functionalities, this work reaches interoperability through the BIG IoT API that defines a generic

Arne Bröring

Siemens AG

Andreas Ziller

Siemens AG

Victor Charpenay

Siemens AG

Stefan Schmid

Robert Bosch GmbH

Aparna S. Thuluva

Siemens AG

Darko Anicic

Siemens AG

Achille Zappa

National University of

Ireland

Mari Paz Linares

Univesitat Politecnica de

Catalunya

Lars Mikkelsen

Aalborg University

Christian Seidel

VMZ Berlin GmbH

 IEEE PERVASIVE COMPUTING MAGAZINE

base structure, which can be instantiated by annotation with terms from a semantic vocabulary.

The advantage is that the semantic vocabulary is easier to be developed in a community process,

which is essential for building a multi-platform IoT ecosystem. In this way the API is kept slim

and easy understandable while being generic and applicable in different domains.

RELATED WORK

Previous work on IoT architectures (e.g., [3]) provide high-level layering and abstraction con-

cepts. We go further than a mere architectural proposal here and provide a concrete API and its

implementation. This is similar to [4], although, we do not develop yet another platform, but

instead propose a generic API to be applied to existing platforms. The key difference to the

manifold IoT standards and adaptation approaches already out there is that the BIG IoT API

provides only a base structure and relies on semantic annotation to make it useful. Thereby,

managing interoperability is transferred from the API to the semantic model.

An example for the contrary approach, i.e., defining one specific API to integrate all kinds of IoT

functionalities, is the meSchup IoT platform [5]. Via a JavaScript API, a naming scheme allows

accessing properties from a list of integrated device types. I.e., for each new device type the

meschUp IoT platform is adjusted. This works well for a single IoT platform with full control

over the API. As soon as multiple platforms are involved to form an ecosystem, a community

process needs to be established, which can be better supported through extending a common

semantic model than a full API definition. Established semantic models, which have already

proven that they can be efficiently managed by a community, are schema.org [6] or Haystack1.

There is a heterogeneous landscape of existing standards for IoT platforms, such as OMA

LWM2M2, OneM2M [7], OGC SWE [8] or OPC UA3. Our approach does not aim to supersede

those standards. Instead, by defining an according extension of our semantic model, components

that follow these standards can be integrated with our ecosystem by implementing the BIG IoT

API and describing the data offered semantically. The W3C standard Hydra4 also allows docu-

menting a REST API. Operations on resources can be specified and allow a client to understand

how to interact with the API. This is similar to BIG IoT offering descriptions as both describe

the interface using JSON-LD. However, our approach goes beyond the interface description by

providing semantic domain models that can be used to annotate it. Also, similar to this is the

HyperCat standard5 that describes available IoT resources and semantically annotates them at a

centralized hub. Our approach is different as it does not solely focus on discovery and further

avoids a single point of failure through a hub, but keeps the autonomy at the IoT platforms that

are directly accessed via the BIG IoT API.

In [9], the Semantic Gateway Service (SGS) is presented as a bridge between devices and appli-

cations and translates between device messages and higher level data models. To enable analysis

and reasoning, the data received from the device is semantically annotated. As a central model

W3C’s SSN ontology [10] is proposed. The SGS approach is similar to the BIG IoT approach;

however, functionalities such as discovery and accounting are not covered. While we define a

semantic domain model, SGS leaves this open, which ultimately leads to less interoperability.

The challenge of semantic interoperability on the IoT is addressed in [11] by introducing the

concept of smart spaces. A Semantic Information Broker (SIB) captures the context of a local

smart space (e.g., a room or vehicle) and is used for discovery and data storage. This is similar to

our Marketplace; however, goes beyond the SIB by supporting accounting of data access and

aims for monetization of IoT resources. On the other hand, data storage is intentionally not sup-

ported, but kept at the responsibility of each platform. This is important for many IoT platform

providers, as their data is protected and needs to remain behind their own security mechanisms.

The SIB intentionally captures the data of all agents within the smart space to decouple the

agents from each other.

1 https://project-haystack.org
2 http://www.openmobilealliance.org/release/LightweightM2M/V1_0_2-20180209-A
3 https://opcfoundation.org/developer-tools/specifications-unified-architecture
4 http://www.hydra-cg.com/spec/latest/core/
5 http://www.hypercat.io/standard.html

 BEYOND TESTBEDS: REAL-WORLD IOT DEPLOYMENTS

Addressing semantic interoperability, Kotis & Katasonov [12] propose a semantic gateway

design that supports the semi-automated translation of things’ data. Therefore, alignments of the

things’ ontological descriptions with a well-defined schema are computed. This allows the provi-

sion of data in a uniform way. Our approach requires the provider to register an offering descrip-

tion at the Marketplace and therefore translate the metadata beforehand manually. An automated

alignment could be included in the future. However, it requires a preexisting ontological descrip-

tion of things, which is today rarely present.

A SEMANTICALLY-ENABLED API FOR
INTEROPERABLE IOT ECOSYSTEMS

Figure 1 provides an overview of the interplay of components of an IoT ecosystem based on the

BIG IoT API: The central pillar of the ecosystem is the Marketplace. Here, a Provider (e.g., an

IoT platform offering parking space data) registers its resources as so-called Offerings. To facili-

tate a provider in conforming with the BIG IoT API, the Provider Library (Lib) can be utilized.

Figure 1: IoT ecosystem components

A Consumer in this ecosystem is an IoT application or service that consumes offerings of one or

multiple IoT platforms. A consumer discovers matching offerings at runtime based on a so-

called Offering Query. Both sides, the consumer and provider, report accounting data (e.g. num-

ber of resource records obtained/provided) back to the Marketplace, which enables the monetiz-

ing of resources.

A consumer example is the ParkFinder application that we developed for the SEAT S.A. car

manufacturer. Since cars are roaming between cities, the app needs to be capable of accessing

parking data from multiple platforms in an interoperable way, i.e., without a per-platform inte-

gration. We implemented ParkFinder as a smartphone app that is incorporated with the car’s

dashboard. The user can get real time parking availability by filtering on preferences (e.g., dis-

tance or price). Once the user simply enters where she is headed, the app provides real time

guidance to the parking spot. Further description on the implementation of this app with the BIG

IoT API is given below.

Offering Description Model

An Offering represents a resource provided by an IoT platform. This could be data, such as a

timeseries of temperature data, or functions, such as changing the sampling rate of a thermome-

ter. An offering is defined by an Offering Description (OD) that can be registered on the Market-

place. The OD comprises information on how to access the described resources, syntactic

definition of used input and output types, as well as semantic annotations to enable discovery

and correct matchmaking between consumers’ demands and providers’ offers. The OD model is

 IEEE PERVASIVE COMPUTING MAGAZINE

shown in Figure 2 and based on the Thing Description model6 developed in the W3C Web of

Things Working Group.

Figure 2: Overview of the offering model

At the heart of the model are the Offering and its conceptual counterpart the OfferingQuery. Both

classes have the same properties. While an offering is linked to a provider, an offering query is

created by a consumer to search for matching offerings via the Marketplace. This design follows

the mechanism of demand/offer, modeled in schema.org [6] via the classes “schema:Demand”

and “schema:Offer”.

An offering has a Category that puts it in context and can be used for discovery as a search

keyword. Further, the offering has endpoint details that specify the address, protocol and method

(e.g., HTTP POST or CoAP GET). Crucial for enabling the access to offerings is the definition

of its input and output data. Input data describe the parameters to query the offering. Output data

describe the types used in the response. Additionally, the offering defines non-functional proper-

ties such as spatial extent, price or license, to refine the offering matching process.

Listing 1 shows an example of an OD as an instance of that model encoded in JSON-LD. This

offering provides outside temperature measurements and hence declares to be of category

AirTemperature from our environment vocabulary. Three inputs are defined: latitude, longitude,

and radius. The outputData is defined as a complex structure that contains multiple objects, each

one having two members: “temperature-value” and “unitOfMeasure”.

{"@context" : "https://schema.big-iot.org/ctx.jsonld",

 "schema" : "http://schema.org",

 "providerId" : "WeatherGuru",

 "name" : "My-Temperature-Offering",

 "category" : "http://schema.big-iot.org/environment#AirTemperature",

 "endpoints" : [{

 "schema:url" : "http://my-server/access/temp",

 "schema:type" : "HTTP", "method" : "POST",

 "mediaType" : "application/json"}],

 "inputData" : [

 { "name" : "latitude", "rdfAnnotation" : "schema:latitude"},

 { "name" : "longitude", "rdfAnnotation" : "schema:longitude" },

 { "name" : "radius", "rdfAnnotation" : "schema:geoRadius" }],

 "outputData" : {

 "rdfReference": "schema:QuantitativeValue",

 "members": [

 { "name": "temperature-value", "rdfAnnotation": "schema:value" },

6 https://w3c.github.io/wot-thing-description/

 BEYOND TESTBEDS: REAL-WORLD IOT DEPLOYMENTS

 { "name": "unitOfMeasure", "rdfAnnotation": "schema:unitCode" }]

…

Listing 1: Example of an Offering Description

Vocabulary for the Semantic Annotation

For the semantic annotation of offering descriptions, e.g., defining the semantics of inputs, out-

puts and offering category, a well-defined vocabulary of domain terms is needed. This vocabu-

lary should be widely shared and agreed upon so that all consumers and providers of IoT

platforms can rely on it. Further, it should evolve in an open community process to allow active

engagement by ecosystem stakeholders.

We have selected schema.org [6] as a basis for our domain model, as it provides a vendor-

neutral, community-developed vocabulary for structured data. Schema.org markup is widely

used on Web pages to annotate their content. Today, the core of schema.org covers a broad

selection of terms ranging from e-commerce to sports activities. Other domains are covered as

extensions (e.g., health-lifesci.schema.org). For the deployments in the mobility domain ad-

dressed in this work, we have developed an extension called schema.big-iot.org/mobility. It

includes definitions for relevant concepts, such as parking site or bus stop. We have documented

all defined concepts as Web pages in the schema.org style (see e.g. http://schema.big-

iot.org/mobility/ParkingSpace).

Crucial for our generic API approach is to enable the management of the underlying semantic

model in a community process. We support this via the Marketplace user portal. When register-

ing a new offering, the provider can specify the semantic annotations. For example, an offering

representing traffic speed data shall be registered. The user would find the category “Mobility”

and its sub-category “Traffic”, but “Traffic Speed” is not part of the vocabulary. Hence, the

provider can manually propose it as a new term by simply submitting it via the portal. Hence-

forth, this term is added to the vocabulary as “proposed:trafficspeed” and the offering is listed by

the Marketplace by marking its category as proposed.

Once a new term is proposed to the system, a community process is initiated and moderated by

an ontology engineer to include the term officially into the vocabulary or respond with a rejec-

tion of the addition. As the Marketplace is the focal point for providers and consumers to engage

in the ecosystem, also other management tasks on the vocabulary, e.g., the proposal of deletion

of terms or the re-organization of hierarchies, will be proposed and moderated here in the future.

The Generic IoT API

There are two kinds of integration modes supported by the BIG IoT API: (a) provider-side inte-

gration and (b) consumer-side integration. Both integration modes are illustrated in Figure 1.

In integration mode (a), an IoT platform uses the Provider Lib to proxy a data access call to an

offering of the IoT platform. The application logic for that callback is implemented by the pro-

vider. To enable consumers to find the offering, the provider registers its OD at the Marketplace.

To discover offerings, the consumer sends a search query to the Marketplace. A discovery may

return multiple matching ODs. Once a consumer has selected an offering, it subscribes to it and

obtains an access token via the Marketplace. Upon access to an offering, the Provider Lib pro-

cesses the request, validates the access token, and calls the offering’s callback function. I.e., here

the access interface is offered by the BIG IoT Provider Lib directly.

The access interface comprises the following parameters: First, the token field authorizes the

user and is located in the header of the request. Second, the input data and output data fields are

filled according to the specification in the OD. The input data included in the request are encod-

ed according to the mediaType specified in the OD. E.g., in Listing 1, parameters are encoded as

JSON and sent to the HTTP endpoint as a payload of the POST method. The JSON message in

the payload could e.g. be {"latitude":50.22,"longitude":8.11,"radius":500.0}. Similarly, the

output data are encoded according to the specified mediaType. In Listing 1, the response from

 IEEE PERVASIVE COMPUTING MAGAZINE

the provider is encoded in JSON and contains an array comprising objects such as {"tempera-

ture-value": 23, "unitOfMeasure": "degC" }.

In integration mode (b), the BIG IoT API supports a fully descriptive adaptation of the existing

platform interface to provide direct access to offerings. As shown in Figure 1, the Consumer Lib

accesses the legacy API of the IoT platform directly. This integration mode requires more infor-

mation in the OD on the exact syntax of the request and its response, i.e., how it is structured and

formatted. The required additional information is provided via a template approach for the re-

quest and a selector approach for the response.

The example in Listing 2 shows a request template to access an existing IoT platform to request

temperature values with a location filter. Here, the request is encoded in XML, although, this

template approach is language-agnostic. Instead of containing actual values, the request template

contains placeholders (marked between “@@” signs). This is essential for our approach, as the

consumer can now use this request template for querying data from the platform by replacing the

placeholders with actual values that fit the specification of the inputData in the OD. A statement

is included for each inputData element of the OD to link it with a placeholder; e.g., the statement

"placeholder": "@@y@@" is added to the “latitude” input in Listing 1.

<?xml version="1.0"?>

<WeatherRequest>

 <observedProperty>schema:temperature</observedProperty>

 <location>

 <circle-y>@@y@@</circle-y>

 <circle-x>@@x@@</circle-x>

 <circle-radius>@@radius@@</circle-radius>

 </location>

</WeatherRequest>

Listing 2: Request template to access data from an IoT platform

To convey the semantics of the original response to the consumer, the OD needs to be also ex-

tended by the information of which data elements shall be mapped to which outputs. Therefore,

the OD is extended by including selectors, which map response elements to outputData ele-

ments. E.g., an XML SOAP response “<Envelope><Body><Measurements><Measure

time=”13:19”>23</Measure>…” contains an array of temperature measurements. These values

can be linked to the output “temperature-value” of the OD in Listing 1 by adding the statement

“selector”: “Envelope.Body.Measurements.Measure” into the outputData element. Such a

selector represents a path in the tree data structure (similar to XPATH). This goes beyond a

similar integration mechanism described in [13], as also arrays of data values can be mapped.

DEPLOYING PLATFORMS & APPLICATIONS WITH
THE BIG IOT API

The BIG IoT API has been utilized so far by 10 IoT platforms to provide over 60 offerings,

which are publicly accessible on the Marketplace (https://market.big-iot.org/). In our deploy-

ments, we have focused so far on four geographic regions: Barcelona (Spain), Piedmont (Italy),

and Berlin / Wolfsburg (Germany).

In Barcelona, WorldSensing’s IoT platforms FastPrk and Bitcarrier have been incorporated in

the ecosystem using the BIG IoT API to provide parking data and traffic information. Also, the

Sentilo and OpenIoT platforms have been integrated to provide information on bike sharing,

noise levels, and e-car charging stations. To detect people density in the city, Wifi probe sensors

(stationary and mounted on busses) have been integrated. Further, we have integrated air quality

sensors hosted on cars. In Piedmont, the regional smartdatanet platform has been integrated to

provide data on parking, air quality, traffic and bike sharing. In Berlin / Wolfsburg, we integrated

VMZ’s Traffic Information Center and Bosch’s IoT Suite to provide parking, live bus data and

charging station availability.

 BEYOND TESTBEDS: REAL-WORLD IOT DEPLOYMENTS

Intentionally, we are providing similar data sets for different regions and platforms. Using the

BIG IoT API, one application can demonstrate cross-platform interoperability[2][2][2][2][2]. We

illustrate this aspect in context of the ParkFinder application (Figure 1) implemented for SEAT

S.A. The key benefit of using the BIG IoT API for this app is that data from different platforms

can be automatically discovered through the Marketplace. I.e., the system is efficiently extenda-

ble to different cities and parking data providers. We demonstrate this ability by integrating the

app with the FastPrk platform and the VMZ platform. Their ODs both refer to the category

“mobility:ParkingSpace”, hence the platform offerings are found via the Marketplace.

Listing 3 shows the implementation of the provider for the FastPrk platform. The Java code

authenticates a provider object, creates an offering description and sends it to the Marketplace.

The Lib allows easy appending of metadata to the offering (category, region, inputs, outputs,

etc.). A request handler (callback) is defined that implements the business logic to respond with

the correct information when the offering is accessed. Similar to the provider code, the Con-

sumer Lib is used for the ParkFinder application. A consumer object can discover and subscribe

to offerings and access it with concrete input parameters.

Provider provider = new Provider(PROVIDER_ID, MARKET_URI, IP, PORT);

provider.authenticate(PROVIDER_SECURITY_TOKEN);

RegistrableOfferingDescription offeringDescription =

 provider.createOfferingDescription("MyOfferingID")

 .withCategory("mobility:ParkingSpace")

 .inRegion(Region.city("Barcelona"))

 .withLicenseType(LicenseType.OPEN_DATA_LICENSE)

 .addInputData("long", "schema:longitude", NUMBER)

 .addInputData("lat", "schema:latitude", NUMBER)

 .addInputData("radius", "schema:geoRadius", NUMBER)

 .addOutputData("parkX", "schema:longitude", NUMBER)

 .addOutputData("parkY", "schema:latitude", NUMBER)

 .addOutputData("status", "mobility:parkingSpaceStatus", STRING)

 .withAccessRequestHandler(accessCallback);

offeringDescription.register();

Listing 3: Excerpt of provider code using Provider Lib

EVALUATING THE BIG IOT API

In this section, we evaluate the API concerning performance as well as usability. An analysis of

these results is provided in the next section. Both aspects are important to introduce the API as

an enabler for IoT ecosystems.

For evaluating the performance, we used the OpenWeatherMap7 platform as an example and

implemented a Java application that compares the access between two cases: (i) utilizing the

Consumer Lib to access a Provider that proxies the platform in a BIG IoT-conform way and (ii)

native communication with the platform API. We limited the evaluation to one offering, since it

is the impact of using the BIG IoT API that is of interest, and not the difference between varied

sizes of offering data.

The overhead caused by BIG IoT is measured as the difference in transfer time and transferred

data. The transfer time is measured for a full data access cycle (i.e., start of the request call until

response is received by application). The transferred data is measured as the total amount of

bytes of the involved HTTP requests and responses. Thereby, case (i) involves additional HTTP

communication between consumer and provider, while both were located on the same machine

so that the measurements were not subject to public network cross traffic. The interaction with

the Marketplace for registering and discovering the offering was not captured, as this only hap-

pens during application initialization.

7 https://openweathermap.org/api

 IEEE PERVASIVE COMPUTING MAGAZINE

We ran this performance test 50 times, which resulted in an averaged transfer time of 126.6 ms

for case (i) and 108 ms for case (ii). This overhead of 18.6 ms of the BIG IoT approach is due to

the additional provider logic (e.g., validation of access token, and mapping of received data to

semantically-defined outputs). Further, the BIG IoT approach caused an overhead of 240 bytes in

transferred data. This is mainly due to the access token (a JSON Web token) that is sent by the

consumer to the provider for authentication purposes.

For evaluating the usability, we conducted an online survey that was filled by 12 developers,

external to the BIG IoT project, as part of a hackathon and an open call for ecosystem exten-

sions. In the first question, most participants (84 %) rated their experience as developers from

medium to high (3-4) on a scale from 0-5. Next, the survey consisted of 4 questions each for the

usability of the Consumer Lib and the Provider Lib. They related to how much time it took to

consume / provide the first and the last offering, how convenient the Libs were perceived, and

how easy it was to get started.

To consume the first offering it took 67% of the participants 30-60 minutes, while the last offer-

ing could be consumed by 75% in less than 10 minutes. The provisioning of a first offering took

30-60 minutes for 50% and the last offering could be registered in under 30 minutes by 86% of

participants. The convenience of the Consumer Lib was rated by 86% of participants medium to

high, and for the Provider Lib 63% specified a high convenience. The ease of getting started was

rated by most developers (67%) as high for the Consumer Lib and medium to high by 88% for

the Provider Lib.

After these multiple choice questions, free-text fields allowed the participants to provide feed-

back. Positive aspects noted related to the good developer guide, the availability of complemen-

tary data on the Marketplace, and the semantic alignment with schema.org as it gives clear

documentation. Suggestions for improvement were given regarding the support of more pro-

gramming languages, the advancement of the Marketplace (e.g., regarding stability or better

support for monetization), and guidance to choose the right semantic terms.

LESSONS LEARNED

With multiple real-world deployments of the API, we have shown how our approach facilitates

interoperability. Deployments of IoT platforms from different domains and geographic regions

can be transparently accessed by an application that utilizes the API. The case of the ParkFinder

application shows the advantages of the presented approach and how this bridging of the in-

teroperability gap has the potential of creating economic value. The ParkFinder app only needed

to be implemented once, and can henceforth work with different IoT platforms providing parking

information. This fulfils the “Cross Platform Access” pattern described in [2].

The API is generic insofar that no assumption is made about the semantics of inputs and outputs

of IoT offerings. Our generic approach allows for annotations from separate semantic models

and stands in contrast of defining one gigantic specific API that covers all possible functionali-

ties of all platforms. Conceptually this is a delegation of the interoperability problem from the

API to the semantic models. The key difference however is that semantic models are easier to

extend and maintain in a community process. Project Haystack8 and schema.org [6], which is

used for millions of Web pages, show how such models can be efficiently managed by a com-

munity. For establishing a multi-platform IoT ecosystem, extending and maintaining a semantic

model in a community process is easier than doing it for an ever-growing API. As only fractions

of the semantic model are used by one platform, the impact is reduced – while in case of a spe-

cific API, it is expected that a platform implements most parts. A semantic model is intrinsically

extensible (e.g. by adding terms to a taxonomy), thus it is capable to cover evolution of existing

and addition of future use cases and domains.

As schema.org does not yet sufficiently cover IoT-related terms and also specific terms for our

application domains, we have extended the schema.org vocabulary. We aim to integrate these

8 https://project-haystack.org

 BEYOND TESTBEDS: REAL-WORLD IOT DEPLOYMENTS

extensions to the schema.org core or to new domain specific extensions of schema.org so that it

will cover in future also IoT-relevant application domains such as mobility, environment, or

health. The model of the offering description has been aligned with the Thing Description model

developed in the W3C Web of Things group, which is on its way to become an official recom-

mendation.

In order to bring an existing IoT platform into the ecosystem, we present two alternative modes:

(a) provider-side and (b) consumer-side integration. While the provider-side integration relies on

the easy-to-use libraries, the consumer-side integration incorporates an interface and protocol

description of the platform API, which enables a fully descriptive integration.

This fully descriptive adaptation of platform APIs can facilitate integration of new IoT platforms

into the ecosystem. Particularly when thinking this concept further towards tools that support the

creation of the ODs through intelligently designed user interfaces, enriched with protocol tem-

plates and data selectors. Once such an OD is defined for a specific communication protocol

(e.g., LWM2M or OneM2M) it can be even shared with other platform providers that use the

same protocol.

Our deployments have shown, that the fully descriptive approach can be applied to Web APIs

with different protocols, e.g., HTTP, CoAP, MQTT, or WebSockets. The outgoing messages

may use arbitrary structures; however, they have to be ASCII-encoded to represent them as a

template. The incoming messages transmitting data from the platform to the consumer has to

represent a tree structure so that the data selector approach can be applied. This is the case for the

widely-used JSON and XML formats. Although this scope of the approach covers most IoT

platform interfaces today, there are clear limitations in this design, e.g., binary data encodings

cannot be covered.

Also not yet covered in the proposed design for descriptive adaptation is a way to support differ-

ent authentication protocols on the platform. In the integration mode (a) the authentication is

granted by the Marketplace and the consumer receives an access token to be able to request data

from the gateway service of the provider. The authentication mechanisms used between gateway

and platform are oblique to the consumer. In case of the integration (b), the authentication has to

happen directly with the platform. Here, a workflow description for the authentication method

employed by the platform can be supported in the future.

Our evaluations of the API have confirmed its usefulness. The performance evaluation showed

that the transfer time and data overheads caused by using the API are low. The measured over-

heads stem from additional functionalities provided by the BIG IoT approach. Mainly, they are

due to the validation and transfer of the access token, which is basis of the security mechanism in

BIG IoT. Further, the introduced interoperability causes some overhead, as the mapping of re-

ceived data to semantically-defined outputs requires some computation time. The usability eval-

uation showed generally positive feedback. The survey confirmed that most developers were

able to use the API efficiently. Nevertheless, developers indicated the need for improvements,

such as better guidance on choosing semantic terms.

CONCLUSION

With multiple real-world deployments, we have shown how our approach facilitates cross-

platform interoperability. Deployments of IoT platforms from different domains and geographic

regions can be transparently accessed by an application that utilizes the BIG IoT API. Both, the

API libraries and the central Marketplace component are being published as open source under

the Eclipse IoT umbrella9.

In future, the functionalities of the BIG IoT API will be extended, such as operations for event

notification and controlling of things. Then, the idea of a Web of Systems with autonomously

interacting things [14] can be implemented utilizing the API. To support quality of service capa-

bilities offerings need to be enabled to indicate e.g. their maximum access frequency, which the

API needs to enforce.

9 https://projects.eclipse.org/proposals/eclipse-big-iot

 IEEE PERVASIVE COMPUTING MAGAZINE

Another future development on our agenda is the incorporation of mechanisms for semantic and

syntactic mediation. As the likelihood of mismatches during offering discovery is high, an ap-

proach for mediating between queried and available offerings is needed. This could start with

simple unit transformations and could expand to advanced semantic concept conversion [15].

Further, validation of offerings on registration is a topic for future work. Currently, the Market-

place does not check the validity of the specification of an uploaded offering description against

actual data retrieved from the platform. This may lead to falsely described offerings on the Mar-

ketplace. We are working on an automated validation of inputs and outputs with a sample data

sets from the platform.

REFERENCES
[1] J. Manyika et al., “The Internet of Things: Mapping the Value Beyond the Hype,” McKinsey Global Institute,

2015.
[2] A. Bröring et al., “Enabling IoT Ecosystems through Platform Interoperability,” IEEE Softw., vol. 34, no. 1, pp.

54–61, Jan. 2017.

[3] A. Bassi et al., Enabling things to talk, Designing IoT solutions with the IoT Architectural Reference Model.
Springer, 2013.

[4] J. L. Pérez, Á. Villalba, D. Carrera, I. Larizgoitia, and V. Trifa, “The COMPOSE API for the Internet of Things,”
in Proceedings of the 23rd International Conference on World Wide Web, New York, NY, USA, 2014, pp. 971–

976.

[5] T. Kubitza and A. Schmidt, “meSchup: A Platform for Programming Interconnected Smart Things,” Computer,
vol. 50, no. 11, pp. 38–49, 2017.

[6] R. Guha, D. Brickley, and S. Macbeth, “Schema. org: Evolution of structured data on the web,” Communications of

the ACM, vol. 59, no. 2, pp. 44–51, 2016.
[7] J. Swetina, G. Lu, P. Jacobs, F. Ennesser, and J. Song, “Toward a standardized common M2M service layer plat-

form: Introduction to oneM2M,” IEEE Wirel. Commun., vol. 21, no. 3, pp. 20–26, 2014.

[8] A. Bröring et al., “New Generation Sensor Web Enablement,” Sensors, vol. 11, no. 3, pp. 2652–2699, 2011.
[9] P. Desai, A. Sheth, and P. Anantharam, “Semantic Gateway as a Service Architecture for IoT Interoperability,” in

2015 IEEE International Conference on Mobile Services, 2015, pp. 313–319.

[10] M. Compton et al., “The SSN ontology of the W3C semantic sensor network incubator group,” Web Semant. Sci.
Serv. Agents World Wide Web, vol. 17, pp. 25–32, 2012.

[11] J. Kiljander et al., “Semantic Interoperability Architecture for Pervasive Computing and Internet of Things,” IEEE

Access, vol. 2, pp. 856–873, 2014.
[12] K. Kotis and A. Katasonov, “Semantic Interoperability on the Internet of Things: The Semantic Smart Gateway

Framework,” Int. J. Distrib. Syst. Technol. IJDST, vol. 4, pp. 47–69, Jul. 2013.

[13] A. Bröring, S. Below, and T. Foerster, “Declarative Sensor Interface Descriptors for the Sensor Web,” in ISPRS
Archives - WebMGS 2010: 1st International Workshop on Pervasive Web Mapping, Geoprocessing and Services,

Como, Italy, 2010, vol. 38.

[14] F. Michahelles and S. Mayer, “Toward a Web of Systems,” XRDS, vol. 22, no. 2, pp. 62–67, Dec. 2015.
[15] M. Mrissa, C. Ghedira, D. Benslimane, and Z. Maamar, “A context model for semantic mediation in web services

composition,” in International Conference on Conceptual Modeling, 2006, pp. 12–25.

ABOUT THE AUTHORS

Arne Bröring is a research scientist at Siemens’ corporate research and the scientific and

technical coordinator of the BIG IoT project. His research interests include the Internet of

Things, sensor webs, and semantic interoperability. Bröring received a PhD in

geoinformatics from the University of Twente (NL).

Andreas Ziller is research scientist at Siemens’ corporate research. Ziller received an MSc

from the Technical University of Darmstadt.

Victor Charpenay is a doctoral researcher at Siemens’ corporate research. Charpenay re-

ceived an MSc from the University of Passau and INSA Lyon.

Stefan Schmid is a senior expert in the IoT at Bosch Corporate Research. His research in-

terests are knowledge-based services, machine intelligence, and semantic interoperability.

Schmid received his PhD in computer science from Lancaster University.

Aparna S. Thuluva is a doctoral researcher at Siemens’ corporate research. Thuluva re-

ceived an MSc from the Technical University of Dresden.

 BEYOND TESTBEDS: REAL-WORLD IOT DEPLOYMENTS

Darko Anicic is a research scientist at Siemens Corporate Technology. His research inter-

ests are the development and standardization of the Web of Things, the Semantic Web, and

complex-event processing. Anicic received a PhD in computer science from the Karlsruhe

Institute of Technology.

Achille Zappa is a post-doctoral research associate at the National University of Ireland,

Galway. His interests include Semantic Web Technologies, Semantic Data Mashup, Linked

Data, Big Data Management, and Knowledge Engineering. Zappa received a PhD in Bioen-

gineering from the University of Genoa.

Mari Paz Linares is an assistant professor at the department of Statistics and Operation

Research of the Universitat Politecnica de Catalunya (UPC). She received a PhD on dynam-

ic traffic assignment and mesoscopic traffic simulation from UPC.

Lars Mikkelsen is a post-doctoral researcher at Aalborg University from where he also re-

ceived a PhD in wireless communication networks.

Chrisitan Seidel is a consultant at VMZ Berlin. His interests focus on mobility and smart

cities.

